3,6-Dioxoperhydropyrrolo[1,2-a]pyrazines as Templates for Peptidomimetics Mercedes Martín-Martínez, M.º Teresa García-López, Rosario Herranz and Rosario Gónzalez-Muñiz* Instituto de Química Médica (CSIC), Juan de la Cierva, 3, 28006 Madrid, Spain **Abstract:** The synthesis of 4,7-di- and 4,7,7-trisubstituted 3,6-dioxoperhydropyrrolo[1,2-a]pyrazine-7-carboxylate derivatives is described. The approach used for the preparation of this heterocyclic template is based on the reductive amination of 4-ketodiesters derived from dipeptides. With the aim of circumventing the known limitations of peptides as potential drugs; i.e. poor bioavailability and short duration of action, various strategies have been devised for finding small nonpeptide molecules, referred to as peptidomimetics, that could bind to peptide receptors. A useful step along the path towards the rational design of these compounds has been the incorporation of conformational constraint into peptides by replacing dipeptide or tripeptide fragments with lactams. A more recent approach is that involving the selection of a template, or scaffold, onto which the pharmacophore amino acid side chains required for binding to the receptor can be attached in an appropriate orientation. Thus, bicyclo[1.2.2]octane, β-D-glucose, cyclohexane and the steroid nucleus have been successfully used as templates in the synthesis of mimetics of enkephalins, somatostatin, TRH8 and RGD, respectively. Synthetic accessibility and ability to carry variable amino acid side chains must be considered when new templates are designed. Based on these considerations and on the reported possibility to obtain high receptor binding affinity with three conveniently oriented binding groups, we focused our attention on compounds 1 in which three amino acid side chains are attached to the 3,6-dioxoperhydropyrrolo[1,2-a]pyrazine template. As it happens with the construction of the nitrogen bridged lactam system in 8-amino-3-oxoindolizidine-2-carboxylates from suitable protected ornithine derivatives, ¹¹ it was expected that intramolecular reductive amination of analogous 4-ketodiesters derived from dipeptides and subsequent γ-lactamization provided ready access to the corresponding 1,4-disubstituted-3,6-dioxoperhydropyrrolo[1,2,-a]pyrazine-7-carboxylate onto which the third amino acid side chain could be appended (Scheme 1). Eventually, the 7-carboxylate group could be either removed or used for incorporation into higher peptides. R^{+} , R^{2} , R^{3} = amino acid side chains ## Scheme 1 According to this approach, variable amino acid side chains could be mounted on the 3,6-dioxoperhydropyrrolo[1,2-a]pyrazine template in different spatial relationships, starting from different dipeptide derivatives. In the case of mimetics with two or three appended hydrophobic chains, this conformationally restricted template, replacing the tripeptide backbone, could prevent the hydrophobic collapse effect. 1e This paper deals with the synthesis of a series of compounds 1 as Xaa-Gly-Yaa mimetics (Xaa=Ala, Leu, Phe, Trp, Asp, Orn; Yaa=Gly, Phe). 12 The different aspects involved in the construction of the bicyclic bis-lactam system and the factors affecting the stereochemistry of the new chiral centers formed are discussed. ### RESULTS AND DISCUSSION Bearing in mind that catalytic hydrogenation of 4-ketodiesters derived from Boc-Orn(Z)-OH directly provide the 3-oxoindolizidine system, ¹¹ we decided to explore this method for the elaboration of the structurally related 3.6-dioxoperhydropyrrolo[1,2-a]pyrazine template. To this end, the starting 4-ketodiester analogues 8-13 were prepared by alkylation of dimethyl malonate with the Z-Xaa-Gly halomethyl ketones [Xaa=Ala (2), Leu (3), Phe (4), Trp (5), Asp(OBzl) (6), Orn(Boc) (7)], previously obtained from the corresponding dipeptides following a similar procedure to that reported for amino acid derivatives (Scheme 2).¹³ As indicated in Table 1, although catalytic hydrogenation of compounds 8-13 at 30 psi of pressure, using 10% Pd-C as catalyst, gave the corresponding bicyclic bis-lactams 21-25 and 27, different reaction times and temperature were required to complete the process. Thus, dioxoperhydropyrrolopyrazines 21 and 25 were directly formed when ketodiesters 8 and 12 were hydrogenated for 2-3 days, whereas more prolonged reaction times were required for the reductive aminations of ketodiesters 9, 10, 11 and 13 as for the subsequent γ-lactamization of the resulting 2-oxopiperazine intermediates 20 [R¹=CH(CH₃)₂, Ph, In, (CH₂)₂NHBoc| to the bicyclic derivatives 22, 23, 24 and 27, respectively, which were refluxed in toluene to complete this second cyclization. Since the reduction involved in the formation of the mentioned 2-oxopiperazines 20 was very slow, the corresponding intermediate imines 15, 16, 17 and 19 could be isolated when the catalytic hydrogenation was stopped after disappearance of the starting 4-ketodiesters 9, 10, 11 and 13, respectively. Concerning the stereochemical course of the reaction, it can be noted that diastereoisomers with R configuration at C_{8a} were always obtained as major compounds. This result can be rationalized by the hydrogenation of the imine intermediate in such a way that the hydrogen enters by the less hindered side of the molecule and, hence, by the opposite side to the R^{\perp} substituent. As the 8aR/8aS ratio found for the Ala, Leu and Orn (Boc) derivatives 21, 22 and 27 is very similar, it seems that the size of the R^{\perp} substituent does not have a significant influence on the stereochemical results. Therefore, the formation of the more stable 5R-2-oxopiperazine, with the substituents at C_3 and C_5 in pseudoequatorial disposition, could explain the predominance of the 8aR diastereomers. Additionally, the existence of stabilizing interactions between the tetrahydropyrazine ring and the R^{\perp} aromatic moiety in the imine intermediates 16 and 17 could be responsible for the higher diastereomeric excess at C_{8a} in the Phe and Trp derivatives 23 and 24. The low stereoselectivity at C_{8a} found for the Asp derivative 25 (ab/cd 1.1:1), which was transformed into the diester analogue 26 for easy of isolation and characterization, could be attributed to the participation of a «chelation mechanism» in the hydrogenation process, involving the formation of a six-membered cyclic complex through electrostatic interactions between the palladium catalyst and the carboxylic oxygen of the Asp residue and the imino group. Related five-membered substrate-catalyst complexes have been proposed to explain the stereochemical course in the catalytic hydrogenation of α -ketoamides and Schiff bases of α -ketoacids. ^{15,16} | Compd. | R ¹ | Compd. | R ¹ | Isomer | C ₄ ,C ₇ ,C ₈ a | |------------|-----------------------------------|------------|---------------------------------------|--------|--| | 2,8,14,21 | Н | 6,12 | CO ₂ Bzl | а | S,R,R | | 3,9,15,22 | CH(CH ₃) ₂ | 18,25 | CO₂H | b | S,S,R | | 4,10,16,23 | Ph | 26 | CO₂Me | c | S,R,S | | 5,11,17,24 | In | 7,13,19,27 | (CH ₂) ₂ NHBoc | đ | S, S, S | Scheme 2 As expected, γ -lactamization of compounds 20 provided mixtures of 7R and 7S diastereoisomers. The chromatographic separation of the resulting diastereomeric bis-lactams was very difficult, being only possible for the Ala derivatives 21, in which isomers 7R,8aR 21a and 7S,8aS 21d were almost exclusively formed, and for the Asp derivatives 26b and 26c with 7S,8aR and 7R,8aS configuration, respectively. In addition to that, compounds 22ab, 22cd, 23ab, 24ab and 26ad could also be separated from the corresponding reaction mixtures. The absolute configuration at C_{8a} and C_7 was assigned by means of NOE experiments. Thus, isomers with R configuration at C_{8a} showed a weak, but significant, NOE between H_4 and H_{8a} protons, indicating that these protons are located on the same side of the heterocyclic ring. Similarly, the observed weak NOE between H_7 and H_{8a} protons in some of the diastereoisomers, revealed a *cis*-relationship between these protons and, therefore, 8aR.7R or 8aS.7S, stereochemistry. The existence of minor compounds **23cd** and **27cd**, that could not be either separated or unequivocally identified, was shown from the characterization of their corresponding 7-benzyl derivatives, as will be discussed. | 4-Ketodiester | Reaction time ^a (days) | Final
Compd. | Yield ^b (%) | ab/cd ratio | 8aR/8aS
de | |---------------|-----------------------------------|-----------------|------------------------|--------------------|---------------| | 8 | 2 | 21 | 94 | 5.3:1 | 68 | | 9 | 9 | 22 | 70 | 5.5:1 | 69 | | 10 | 13 | 23 | 68 | 7.5:1 ^c | 76 | | 11 | 13d | 24 | 31d | 7.0:1 ^c | 75 | | 12 | 3 | 25e | 56 ^f | 1.1:1 | 5 | | 13 | 11 | 27 | 80 | 5.5:1 ^c | 69 | Table 1. Results of the hydrogenation reaction of 4-ketodiesters derived from Z-Xaa-Gly-OH In order to test the possibility of replacing the C-terminal Gly residue in the Xaa-Gly-Gly mimetics 21-24, 26 and 27 with other amino acid side chains, these compounds were alkylated with benzyl bromide, in the presence of sodium methoxide, to give the corresponding Xaa-Gly-Phe analogues 28-33 (Scheme 3). Scheme 3 $[^]a$ Time needed for complete disappearance of the imine intermediate. b Yield of isolated compounds. c Estimated by 1 H NMR (from the integrals of H_2 and H_4 protons), d Imine 17 (12%) was isolated after 13 days of hydrogenation and 2 days of reflux in toluene. e This compound was converted into 26 by treatment with diazomethane. f Total yield of the hydrogenation and treatment with diazomethane. | Starting
Compd. | Final
Compd. | Yield ^a
(%) | a/b ratio | c/d ratio | | |--------------------|-------------------------|---------------------------|------------------|------------------|--| | 21a | 28ab | 68 | 3.5:1 | _ | | | 21d | 28d ^b | 69 | | 0:1b | | | 22ab | 29ab | 80 | 3:1c | | | | 22cd | 29cd | 69 | | 1:1 ^c | | | 23abcd | 30abcd | 74 | 4:1 ^d | 1:3 ^d | | | 24ab | 31ab | 43 | 3.5:1 | | | | 26ad | 32abcd | 35 | 3:1c | 1:3 ^c | | | 26b | 32ab | 41 | 3:1c | _ | | | 27abcd | 33abcd | 62 | 4:1 ^c | 1:2 ^c | | Table 2. Results of the alkylation of compounds 21-24, 26 and 27 with benzyl bromide As shown in Table 2, alkylation of the 8aR derivatives preferentially led to the 7R-benzyl analogues with a degree of stereoselectivity which was independent on the nature of the R¹ substituent. This fact seems to indicate a preferential attack of the alkyl halide from the opposite side to the unshared lone pair on the lactam nitrogen .¹⁷ A similar attack on the 8aS analogues involves a close proximity between the alkylating agent and the R¹ substituent and, therefore, the degree of stereoselectivity at C₇ would be dependent on the R¹ substituent size.¹⁷ The absolute configuration at C_7 of the 7-benzyl derivatives was established on the basis of the chemical shifts of the H_{8a} protons. Thus, the observed shielding for this proton in compounds having 8aR,7R configuration, when compared to the same proton in their parent bicyclic derivatives ($\Delta\delta\sim1-1.5$ ppm), indicated that the 7-benzyl group and the H_{8a} proton are in *cis* disposition (Table 5). A similar shielding effect of the 7-arylmethyl chain on the H_{8a} proton was found for those diastereoisomers having 8aS,7S configuration ($\Delta\delta\sim0.4-1$ ppm). An alternative strategy for the preparation of the restricted Xaa-Gly-Phe analogues 28-33 would imply the use of 4-ketodiesters in which the Phe side chain has been previously introduced. To examine this strategy, we prepared the disubstituted malonate 34 by alkylation of the 4-ketodiester 10 with benzyl bromide (Scheme 4). Surprisingly, when compound 34 was hydrogenated under the same conditions as those used for the synthesis of 23, neither the target bicyclic lactam 30 nor the corresponding 2-oxopiperazine intermediate was formed but imine 35 was isolated. However, reduction of imine 35 was achieved by treatment with NaBH₃CN in MeOH for 20 h, leading to a mixture of mono- and bicyclic compounds, that was refluxed in toluene to complete the γ -lactamization process. The evaluation of the mixture of diastereoisomers 30 by HPLC revealed a decrease in the 8aR/8aS selectivity when compared to that obtained by the hydrogenation method of 4-ketodiester 10 (Table 3). In order to evaluate whether this change in the stereoselectivity is due to the NaBH₃CN used as reducting agent or to the presence of the benzyl group at the malonate moiety of ^a From isolated compounds. ^b Traces of compound 28c were detected in the ¹H NMR spectrum of 28d. ^c Estimated by ¹H NMR (from the integrals of H₂ and H₄, and/or H_{8a} protons). ^d Measured by HPLC from the crude reaction mixture. compound 34, this new strategy was applied to the reduction of the monosubstituted malonate analogue 10. Thus, removal of Z group in 10 by catalytic hydrogenation followed by reduction of the resulting imine intermediate 16 with NaBH₃CN and reflux in toluene afforded a 13:1 mixture of diastereoisomers 23ab and 23cd. Since this reduction led to a higher 8aR diastereomeric excess than the catalytic hydrogenation, the decrease selectivity obtained in the reduction of malonate 34 must be due to the presence of the additional benzyl substituent in the imine 35. Support for this assumption comes from considering that the benzyl derivatives 16 and 35 are preferentially in a conformation in which the 3-arylmethyl side chain folds over the tetrahydropyrazine ring. Therefore, any additional interaction between this heterocyclic ring and the benzyl group at the malonic moiety in compound 35 must occur by the other face of the imine intermediate, thus blocking in some extent the attack of the hydride from this face. On the other hand, the preparation of diastereomers 30 from 34 resulted in lower stereoselectivities at C₇, but isomer 75,8aR 30b is now predominant over their 8aR7R epimer 30a. Comparing the synthesis of derivatives 23 by the two alternate reducing methods it must be noted that reaction with NaBH₃CN improves both the yield (from 68 to 78%) and the 8aR/8aS diastereoselectivity (Δde=11%), and substantially shortens the reaction time. Scheme 4 In conclusion, the approach reported here, essentially based on the intramolecular reductive amination of 4-ketodiesters derived from dipeptides, allows one to elaborate 3,6-dioxoperhydropyrrolo[1,2-a]pyrazines as templates bearing variable amino acid side chains. The degree of stereocontrol at the new asymmetric center C_{8a} depends on the starting dipeptide and the reducing agent. It would be expected that a similar basis could be applied to construct a variety of new nitrogen-bridged bicyclic templates, with different rigidity and functionalities in the six-membered heterocyclic ring, starting from suitable dipeptide analogues in which the CONH- bond has been replaced with the corresponding peptide bond surrogate. | Starting compound | Reduction
method | Yield of 23 (%) ^a | 8aR/8aS ratio ^b
(de, %) | Yield of 30a,c | 30a/30b
ratio ^d | 30c/30d
ratiod | |-------------------|----------------------|------------------------------|---------------------------------------|----------------|-------------------------------|-------------------| | 10 | H ₂ /Pd-C | 68 | 7.5:1 (75) | 77 (48) | 4:1 | 1:3 | | 10 | NaBH3CN | 78 | 13:1 (86) | 77 (60) | 4:1 | 1:3 | | 34 | NaBH ₃ CN | | 3:1 ^d (50) | 60 (39) | 1:1.7 | 1:2.4 | **Table 3.** 4,7-Dibenzyl-7-methoxycarbonyl-3,6-dioxoperhydropyrrolo[1,2-a]pyrazines. Influence of the synthetic method on the steroeselectivity. #### EXPERIMENTAL PROCEDURES 1H NMR spectra were recorded with a Varian EM 390, a Varian Gemini 200 or a Varian XL-300 spectrometers operating at 90, 200 or 300 MHz, respectively, using TMS as internal standard. ^{13}C NMR spectra were registered on a Varian Gemini 200 (50 MHz). Elemental analyses were obtained on a CHN-O-RAPID instrument. Analytical TLC was performed on aluminun sheets coated with a 0.2 mm layer of silica gel 60 F254 (Merck). Silica gel 60 (230-400 mesh, Merck) was used for column chromatography. Analytical HPLC was carried out on a Waters apparatus (3.9 x 150 mm, Nova-Pack C18, 4 μ m) with CH3CN(A)/H2O (0.05% TFA) (B) system as eluent (Flow rate 1 mL/min) and UV (214 nm) detection. Z-Protected dipeptides were purchased from Bachem. ## Synthesis of chloromethyl ketones derived from Z-Xaa-Gly-OH dipeptides General procedure. To a solution of the Z-Xaa-Gly-OH dipeptide (18 mmol) in dry THF (40 mL) were successively added, at -20°C, N-methyl-morpholine (21 mmol) and isobutylchloroformate (21 mmol). After stirring for 15 min. at -20°C, an ethereal solution of diazomethane (from N-nitroso-N-methylurea, 6 g) was added. After 30 min. of reaction, a solution of 2N HCl/MeOH (15 mL, 30 mmol) was added and the stirring continued until N₂ evolution ceased. The solution was neutralized with Et₃N and the solvents were evaporated. The resulting residue was dissolved in EtOAc (150 mL), washed with H₂O and the organic layer was dried over Na₂SO₄. Evaporation and precipitation from Et₂O or purification on a silica gel column, using the solvent system specified in each case, afforded the following compounds: Z-Ala-Gly-CH₂Cl (2). Yield: 62%. Chromatographic solvent system: EtOAc/hexane (1:1). 1 H NMR (90 MHz, CDCl₃): δ 1.3 (d, 3H, β-CH₃ Ala), 4.0 (s, 2H, CH₂Cl), 4.2 (m, 3H, α-CH Ala and Gly), 5.0 (s, 2H, CH₂Z), 5.4 (d, 1H, α-NH Ala), 6.8 (m, 1H, α-NH Gly), 7.1-7.2 (m, 5H, C₆H₅ Z). Anal. Calcd. for C₁₄H₁₇ClN₂O₄: C 53.77, H 5.48, Cl 11.34, N 8.96. Found: C 53.50, H 5.31, Cl 11.41, N 8.92. **Z-Leu-Gly-CH₂Cl** (3). Yield: 47%. Precipitated with Et₂O. ¹H NMR (90 MHz, CDCl₃): δ 0.7 (d, 6H, δ -CH₃ Leu), 1.3-1.6 (m, 3H, β -CH₂ and γ -CH Leu), 3.9 (m, 1H, α -CH Leu), 4.0 (s, 2H, CH₂Cl), 4.1 (m, 2H, α -CH₂ Gly), 4.9 (s, 2H, CH₂ Z), 5.3 (d, 1H, α -NH Leu), 6.8 (m, 1H, α -NH Gly), 7.1-7.2 (m, 5H, C₆H₅ Z). Anal. Calcd. for C₁₇H₂₃ClN₂O₄: C 57.54, H 6.53 Cl 9.99, N 7.89. Found: C 57.70, H 6.81, Cl 9.72, N 7.67. **Z-Phe-Gly-CH₂Cl** (4). Yield: 69%. Precipitated with Et₂O. ¹H NMR (90 MHz, CDCl₃): δ 3.0 (d, 2H, β-CH₂ Phe), 4.0 (s, 2H, CH₂Cl), 4.1 (d, 2H, α-CH₂ Gly), 4.4 (m, 1H, α-CH Phe), 5.0 (s, 2H, CH₂ Z), 5.4 (d, a From isolated compounds. b Measured by ¹H NMR from the crude reaction mixtures (integrals of H₂ and H₄ protons). ^c Global yields from 10 are given in parenthesis. ^d Measured by HPLC from the crude reaction mixture 29a-d. 1H, α -NH Phe), 6.6 (m, 1H, α -NH Gly), 7.0-7.3 (m, 10H, C₆H₅ Ph, Z). Anal. Calcd. for C₂₀H₂₁ClN₂O₄: C 61.78, H 5.44, Cl 9.12, N 7.20. Found: 61.53, H 5.79, Cl 9.02, N 7.60. **Z-Trp-Gly-CH₂Cl** (5). Yield: 50%. Chromatographic solvent system: EtOAc/hexane (1:1). ¹H NMR (90 MHz, CDCl₃): δ 3.2 (m, 2H, β-CH₂ Trp), 3.9 (s, 2H, CH₂Cl), 4.0 (d, 2H, α-CH₂ Gly), 4.5 (m, 1H, α-CH Trp), 5.1 (s, 2H, CH₂ Z), 5.5 (d, 1H, α-NH Trp), 6.4 (m, 1H, α-NH Gly), 7.0-7.6 (m, 10H, C₆H₅ Z, In), 8.2 (s, 1H, NH¹). Anal. Calcd. for C₂₂H₂₂ClN₃O₄: C 61.75, H 5.18, Cl 8.28, N 9.82. Found: C 61.87, H 5.24, Cl 7.95, N 9.58. **Z-Asp(OBzl)-Gly-CH₂Cl** (6). Yield: 64%. Precipitated with Et₂O. ¹H NMR (300 MHz, CDCl₃): δ 2.73 (dd, 1H, β-CH₂ Asp), 3.03 (dd, 1H, β-CH₂ Asp), 4.06 (s, 2H, CH₂Cl), 4.22 (d, 2H, α-CH₂ Gly), 4.62 (m, 1H, α-CH Asp), 5.09 (s, 4H, CH₂ Z, Bzl), 5.92 (d, 1H, α-NH Asp), 7.04 (br s, 1H, α-NH Gly), 7.20-7.30 (m, 10H, C₆H₅ Z, Bzl). Anal. Calcd. for C₂₂H₂₃ClN₂O₆: C 59.13, H 5.19, Cl 7.93, N 6.27. Found: C 59.26, H 4.83, Cl 7.94, N 6.31. **Z-Orn**(Boc)-Gly-CH₂Cl (7). Yield: 49%. Precipitated with Et₂O. ¹H NMR (90 MHz, CDCl₃): δ 1.3 (s, 9H, CH₃ Boc). 1.3-1.8 (m, 4H, β- and γ-CH₂ Orn), 3.1 (m, 2H, δ-CH₂ Orn), 4.1 (s, 2H, CH₂Cl), 4.2 (d, 2H, α-CH₂ Gly), 4.3 (m, 1H, α-CH Orn), 4.9 (m, 1H, δ-NH Orn), 5.0 (s, 2H, CH₂ Z), 5.8 (d, 1H, α-NH Orn), 7.2 (m, 1H, α-NH Gly), 7.3-7.4 (m, 5H, C₆H₅ Z). Anal. Calcd. for C₂₁H₃₀ClN₃O₆: C 55.32, H 6.63, Cl 7.77, N 9.22. Found: C 55.15, H 6.54, Cl 7.52, N 8.98. # Synthesis of 4-ketodimethyl esters derived from Z-Xaa-Gly-OH dipeptides General procedure. A mixture of the corresponding chloromethyl ketone (9 mmol) and sodium iodide (9 mmol) in 1,2-dimethoxyethane or THF (30 mL) was stirred at room temperature for 10 min and then added to a solution of freshly prepared sodium salt of dimethylmalonate (10 mmol) in 1,2-dimethoxyethane or THF (20 mL). Stirring was continued for 3-15 h, the solvent removed and the residue was stracted with EtOAc (100 mL) and washed with H₂O (75 mL). The organic layer was dried (Na₂SO₄) and evaporated leaving a residue which was purified on a silica gel column with EtOAc/hexane (1:1). The following compounds were obtained by this method: *Methyl 5-[(N-Benzyloxycarbonyl)-1.-alanyl]amino-2-methoxycarbonyl-4-oxopentanoate* (8). Yield: 77%. ¹H NMR (90 MHz, CDCl₃): δ 1.3 (d, 3H, β -CH₃ Ala), 3.0 (d, 2H, 3-H), 3.6 (s, 6H, CO₂CH₃), 3.8 (t, 1H, 2-H), 4.0 (d, 2H, 5-H), 4.2 (m, 1H, α-CH Ala), 5.0 (s, 2H, CH₂ Z), 5.4 (d, 1H, α-NH Ala), 6.8 (m, 1H, 5-NH), 7.2-7.3 (m, 5H, C₆H₅ Z). Anal. Calcd. for C₁₉H₂₄N₂O₈: C 55.88, H 5.92, N 6.86. Found: C 55.70, H 6.12, N 7.01. *Methyl* 5-[(*N*-Benzyloxycarbonyl)-*L*-leucyl]amino-2-methoxycarbonyl-4-oxopentanoate (9). Yield: 48%. ¹H NMR (90 MHz, CDCl₃): δ 0.8 (d, 6H, δ -CH₃ Leu), 1.4-1.7 (m, 3H, β -CH₂ and γ -CH Leu), 3.0 (d, 2H, 3-H), 3.7 (s, 6H, CO₂CH₃), 3.9 (t, 1H, 2-H), 4.1 (d, 2H, 5-H), 4.2 (m, 1H, α -CH Leu), 5.0 (s, 2H, CH₂ Z), 5.3 (d, 1H, α -NH Leu), 6.9 (m, 1H, 5-NH), 7.3 (m, 5H, C₆H₅ Z). Anal. Calcd. for C₂₂H₃₀N₂O₈: C 58.66, H 6.71, N 6.22. Found: C 58.71, H 7.08, N 6.04. Methyl 5-[(N-Benzyloxycarbonyl)-1.-phenylalanyl]amino-2-methoxycarbonyl-4-oxopentanoate (10). Yield: 69%. 1 H NMR (90 MHz, CDCl₃): δ 2.9 (m, 4H, 3-H and β-CH₂ Phe), 3.6 (s, 6H, CO₂CH₃), 3.8 (t, 1H, 2-H), 4.0 (d, 2H, 5-H), 4.3 (m, 1H, α-CH Phe), 5.0 (s, 2H, CH₂ Z), 5.4 (d, 1H, α-NH Phe), 6.6 (m, 1H, 5-NH), 7.0-7.2 (m, 10H, C₆H₅ Z, Ph). Anal. Calcd. for C₂₅H₂₈N₂O₈: C 61.97, H 5.82, N 5.78. Found: C 61.75, H 5.77, N 5.65. Methyl 5-[(N-Benzyloxycarbonyl)-L-tryptophyl]amino-2-methoxycarbonyl-4-oxopentanoate ($\bf 11$). Yield: 51%. 1 H NMR (200 MHz, CDCl₃): δ 2.81 (d, 2H, 3-H), 3.08 (dd, 1H β-CH₂ Trp), 3.23 (dd, 1H, β-CH₂ Trp), 3.65 (s, 3H, CO₂CH₃), 3.66 (s, 3H, CO₂CH₃), 3.75 (t, 1H, 2-H), 3.90 (d, 2H, 5-H), 4.54 (m, 1H, α-CH Trp), 5.00 (s, 2H, CH₂ Z), 5.44 (d, 1H, α-NH Trp), 6.35 (br s, 1H, 5-NH), 6.92-7.29 (m, 10H, C₆H₅ Z, Indole), 7.51 (s, 1H, NHi). Anal. Calcd. for C₂₇H₂₉N₃O₈: C 61.94, H 5.58, N 8.02. Found: C 61.68, H 5.52, N 8.39. Methyl 5-[(Nα-Benzyloxycarbonyl-Nδ-terc-butoxycarbonyl)-L-ornithyl]amino-2-methoxycarbonyl-4-oxopentanoate (12). Yield: 54%. 1 H NMR (90 MHz, CDCl₃): δ 1.1 (s, 9H, CH₃ Boc), 1.4-2.0 (m, 4H, β- and γ-CH₂ Orn), 3.0 (d, 2H, 3-H), 3.1 (m, 2H, δ-CH₂ Orn), 3.7 (s, 6H, CO₂CH₃), 3.9 (t, 1H, 2-H), 4.1 (d, 2H, 5-H), 4.4 (m, 1H, α-CH Orn), 4.8 (m, 1H, δ-NH Orn), 5.1 (s, 2H, CH₂ Z), 5.8 (d, 1H, α-NH Orn), 7.1 (m, 1H, 5-NH), 7.2-7.4 (m, 5H, C₆H₅ Z). Anal. Calcd. for C₂₆H₃₇N₃O₁₀: C 56.61, H 6.76, N 7.62. Found: C 56.64, H 7.05, N 7.60. *Methyl 5-[(N-Benzyloxycarbonyl-O-benzyl)-L-aspartyl]amino-2-methoxycarbonyl-4-oxopentanoate* (13). Yield: 52%. 1 H NMR (300 MHz, CDCl₃): δ 2.73 (dd 1H, β-CH₂ Asp), 3.01 (d, 2H, 3-H), 3.08 (m, 1H, β-CH₂ Asp), 3.72 (s, 6H, CO₂CH₃), 3.93 (t, 1H, 2-H), 4.12 (d, 2H, 5-H), 4.62 (m, 1H, α-CH Asp), 5.09 (s, 2H, CH₂ Bzl), 5.11 (s, 2H, CH₂ Z), 5.89 (d, 1H, α-NH Asp), 7.04 (br s, 1H, 5-NH), 7.28-7.35 (m, 10H, C₆H₅ Z, Bzl). Anal. Calcd. for C₂₇H₃₀N₂O₁₀: C 59.77, H 5.57, N 5.16. Found: C 59.45, H 5.39, N 5.52. Methyl 2-Benzyl-5-[(N-benzyloxycarbonyl)-L-phenylalanyl]amino-2-methoxycarbonyl-4-oxopentanoate (34). A stirred solution of compound 10 (0.6 g, 1.24 mmol) and HNa (0.049 g, 1.24 mmol) in dry THF (14 mL) was treated with benzyl bromide (0.22 mL, 1.86 mmol). Stirring was continued for 6 h at room temperature, the solvent was evaporated, the residue was extracted with EtOAc and washed with water. The organic extract was dried (Na₂SO₄) and evaporated to leave a residue wich was purified on a silica gel column using EtOAc/hexane (2:3) as eluent. Yield: 0.49 g (68%). ¹H NMR (300 MHz, CDCl₃): δ 2.88 (s, 2H, 2-CH₂), 3.08 (m, 2H, β-CH₂ Phe), 3.37 (s, 2H, H-3), 3.75 (s, 6H, CO₂CH₃) 3.98 (m, 2H, 5-H), 4.45 (m, 1H, α-CH Phe), 5.07 (s, 2H, CH₂ Z), 5.29 (d, 1H, α-NH Phe), 6.45 (m, 1H, 5-NH), 6.93-7.37 (m, 10H, C₆H₅ Z, Ph). Anal. Calcd. for C₃₂H₃₄N₂O₈: C 66,89, H 5.96, N 4.87. Found: C 66.98, H 6.10, N 5.21. # Synthesis of 4-substituted 7-methoxycarbonyl-3,6-dioxoperhydropyrrolo[1,2-a]pyrazines. Method A. A solution of the corresponding 4-ketodiester (5 mmol) in MeOH (100 mL) was hydrogenated at 30°C and 40 psi of pressure for 2-13 days (Table 1), using 10% Pd-C as catalyst. After filtration of the catalyst, the solvent was evaporated and the resulting residue refluxed in toluene for 1-2 days. Then, the solvent was eliminated in vacuo and the residue purified on a silica gel column as specified. Method B. Compound 10 (1 mmol) was dissolved in MeOH (20 mL) and hydrogenated overnight at room temperature and 40 psi of pressure in the presence of 10% Pd-C. The catalyst was filtered and to the filtrate were added ZnCl₂ (0.5 mmol) and NaBH₃CN (3 mmol). After stirring overnight at room temperature, the solvent was evaporated to dryness. The residue was extracted with EtOAc (50 mL), succesively washed with 1N HCl, 10% NaHCO₃ and H₂O, and the organic layer was dried over Na₂SO₄. The resulting residue was dissolved in toluene (20 mL) and refluxed for 2 days. After evaporation of the solvent, the residue was purified as specified. 7-Methoxycarbonyl-4-methyl-3,6-dioxoperhydropyrrolo[1,2-a]pyrazine (21). Chromatographic solvent system: CH₂Cl₂/MeOH (20:1). Isomer (4S,7R,8aR) 21a: Yield, 79% (Method A). Anal. Calcd. for C₁₀H₁₄N₂O₄: C 53.09, H 6.24, N 12.38. Found: C 52.78, H 6.61, N 12.53. Isomer (4*S*,7*S*,8*aS*) **21d**: Yield, 15% (Method A). Anal. Calcd. for C₁₀H₁₄N₂O₄: C 53.09, H 6.24, N 12.38. Found: C 52.86, H 6.49, N 12.04. 4-Isobutyl-7-methoxycarbonyl-3,6-dioxoperhydropyrrolo[1,2-a]pyrazine (22). Chromatographic solvent system: Gradient from 2 to 10% of MeOH in CH₂Cl₂. Isomers (4S,7RS,8aR) **22ab**: Yield, 59% (Method A). Anal Calcd. for C₁₃H₂₀N₂O₄: C 58.19, H 7.51, N 10.44. Found: C 57.89, H 7.40, N 10.21. Isomers (4S,7RS,8aS) **22cd**: Yield, 11% (Method A). Anal Calcd. for C₁₃H₂₀N₂O₄: C 58.19, H 7.51, N 10.44. Found: C 58.02, H 7.67, N 10.18. 4-Benzyl-7-methoxycarbonyl-3,6-dioxoperhydropyrrolo[1,2-a]pyrazine (23). Chromatographic solvent system: CH₂Cl₂/MeOH (40:1). Obtained in 68 and 78% total yield using methods A and B, respectively. Small quantities (< 5%) of the diastereomeric pair 23ab can be separately obtained from the first column fractions. 23abcd: Anal. Calcd. for C₁₆H₁₈N₂O₄: C 63.66, H 6.20, N 9.32. Found: C 63.56, H 6.00, N 9.26. 7-Methoxycarbonyl-4-(indole-3-yl)methyl-3,6-dioxoperhydropyrrolo[1,2-a]pyrazine (24). Chromatographic solvent system: CH₂Cl₂/MeOH (40:1). Total yield 32% (Method A). Imine 17 (11%) was isolated using this method. A 6% of the diastereomeric pair 23ab was separately obtained. 24abcd: Anal. Calcd. for C₁₈H₁₉N₃O₄: C 63.33, H 5.61, N 12.31. Found: C 63.08, H 5.92, N 11.97. 7-Methoxycarbonyl-4-(methoxycarbonyl)methyl-3,6-dioxoperhydropyrrolo[1,2-a]pyrazine (26). Obtained by treatment of the corresponding 4-carboxymethyl derivative 25 (Method A) with diazomethane. Chromatographic solvent system: Gradient from 5 to 15% of MeOH in CH₂Cl₂. Isomers 26ad: yield 41% (a/d ratio, 1.2:1, method A). Anal. Calcd. for C₁₂H₁₆N₂O₆: C 50.70, H 5.67, N 9.85. Found: C 50.36, H 5.83, N 10.17. Isomer 26b: yield 7% (Method A). Anal. Calcd. for C₁₂H₁₆N₂O₆: C 50.70, H 5.67, N 9.85. Found: C 50.46, H 6.06, N 9.62. Isomer 26c: yield 8 % (Method A). Anal. Calcd. for C₁₂H₁₆N₂O₆: C 50.70, H 5.67, N 9.85. Found: C 51.02, H 5.87, N 9.54. 4-[3-(tert-Butoxycarbonyl)amino]propyl-7-methoxycarbonyl-3,6-dioxoperhydropyrrolo[1,2-a]pyrazine (27). Chromatographic solvent system: CH₂Cl₂/MeOH (30:1) Yield, 80% (Method A). 27abcd: Anal. Calcd. for C₁₇H₂₇N₃O₆: C 55.27, H 7.37, N 11.37. Found: C 54.89, H 7.42, N 10.98. # Isolation of imine intermediates A solution of the corresponding 4-ketodiester (1 mmol) in MeOH (20 mL) was hydrogenated at room temperature and 30 psi of pressure for 5 h, in the presence of 10% Pd-C. After filtration of the catalyst and evaporation to dryness, the resulting imine derivative was characterized by ¹H- and ¹³C-NMR without further purification. 5-(2,2-Dimethoxycarbonyl)ethyl-3(S)-isobutyl-2-oxo-1,2,3,6-tetrahydropyrazine (15). 1 H NMR (300 MHz, CDCl₃): δ 0.92 (d, 3H, CH₃ i Bu), 0.96 (d, 3H, CH₃ i Bu), 1.42 (m, 1H, 3-CH₂), 1.74 (m, 1H, 3-CH₂), 1.83 (m, 1H, CH, i Bu), 2,87 (m, 2H, 5-CH₂), 3.74 (m, 4H, 6-H and CO₂CH₃), 3.75 (s, 3H, CO₂CH₃), 3.94-4.06 (m, 3H, 3-H, 6-H and CH Et), 7.38 (s, 1H, H-1). 13 C NMR (50 MHz, CDCl₃): δ 21,16 and 22.49 (CH₃ i Bu), 24.49 (CH i Bu), 34.72 (5-CH₂), 42.47 (3-CH₂), 46.07 (C-6), 47.97 (CH Et), 52.53, 52.65 (OMe), 58.62 (C-3), 160.43 (C-5), 169.55, 169.70, 171.79 (CO). 3(S)-Benzyl-5-(2,2-dimethoxycarbonyl)ethyl-2-oxo-1,2,3,6-tetrahydropyrazine (16). ¹H NMR (300 MHz, CDCl₃): δ 2.70 (m, 1H, 5-CH₂), 2.78 (m, 1H, 5-CH₂), 2.96 (dd, 1H, 6-H, J=17.8, 2.7), 3.12 (dd, 1H, 3-CH₂, J=13.4, 4.4) 3.23 (dd, 1H, 3-CH₂, J=13.4, 5.6), 3.64 (dd, 1H, 6-H, J=17.8, 2.9), 3.72 (s, 3H, CO₂CH₃), 3.78 (s, 3H, CO₂CH₃), 4.03 (dd, 1H, CH Et, J=7.3, 7.1), 4.44 (m, 1H, 3-H), 6.52 (d, 1H, 1-H, J=2.9), 7.08- 7.34 (m, 5H, Ph). ¹³C NMR (50 MHz, CDCl₃): δ 34.59 (5-CH₂), 38.79 (3-CH₂), 45.94 (CH Et), 47.65 (C-6), 52.58 (OCH₃), 61.62 (C-3), 126.59, 127.97, 129.99 and 136.69 (Ph), 161.73 (C-5), 169.43, 169.97 (CO). | Table 4. Significant | ¹ H NMR data of compounds 21 | -24, 26 and 27 (300 MHz, CDCl ₃) | |----------------------|---|--| |----------------------|---|--| | | | | | | | δ (ррг | m) | | | | | т | | |-------------------------|------|------|------|------|------|--------|-----------------|------|--------------------|------|-----------------------------|-----|------------| | Compd. | ŀ | I-1 | H-2 | H-4 | H-7 | ŀ | 1 -8 | H-8a | CO ₂ Me | 4-C | H ₂ ^a | | ',8
[z) | | 21a | 3.49 | 3.31 | 7.29 | 4.21 | 3.55 | 2.41 | 2.16 | 3.75 | 3.82 | 1. | 67 | 8.2 | 11.2 | | 21d | 3.48 | 3.21 | 6.23 | 4.57 | 3.55 | 2.68 | 1.96 | 4.11 | 3.80 | 1. | 47 | 5.4 | 9.9 | | 22a | 3.48 | 3.33 | 6.86 | 4.24 | 3.54 | 2.38 | 2.16 | 3.74 | 3.81 | 2.04 | 1.86 | 8.0 | 11.3 | | 22b ^b | 3.48 | 3.23 | 6.86 | 4.24 | 3.48 | 2.49 | 1.86 | 4.08 | 3.77 | 2.04 | 1.86 | 0.0 | c | | $22c^{d}$ | 3.45 | 3.22 | 6.62 | 4.20 | 3.74 | 2.67 | 1.80 | 4.21 | 3.77 | 2.45 | 1.80 | 0.0 | c | | $22d^d$ | 3.80 | 3.25 | 6.30 | 4.95 | 3.38 | 2.36 | 1.80 | 4.85 | 3.79 | 2.25 | 2.00 | c | c | | 23a ^b | 2.82 | 1.52 | 6.85 | 4.44 | 3.50 | 2.16 | 1.77 | 3.56 | 3.81 | 3.85 | 3.07 | 7.8 | 11.3 | | 23b ^b | 2.84 | 1.52 | 6.89 | 4.44 | 3.45 | 2.25 | 1.45 | 3.86 | 3.71 | 3.91 | 3.11 | 0.0 | 9.7 | | 24a b | 2.74 | 1.67 | 6.12 | 4.48 | 3.56 | 2.19 | 1.78 | 3.59 | 3.86 | 4.01 | 3.42 | 7.9 | 11.9 | | 24b b | 2.74 | 1.47 | 6.67 | 4.53 | 3.47 | 2.19 | 1.15 | 3.84 | 3.76 | 4.16 | 3.32 | 0.0 | 11.3 | | 26ae | 3.70 | 3.44 | 6.60 | 4.28 | 3.51 | 2.42 | 2.36 | 3.82 | 3.79, 3,67 | 3.85 | 3.19 | 8.7 | 10.4 | | 26b | 3.50 | 3.35 | 6.79 | 4.26 | 3.60 | 2.48 | 2.27 | 3.89 | 3.69, 3.61 | 3.78 | 3.13 | 0.0 | 8.0 | | 26c | 3.72 | 3.43 | 6.86 | 4.29 | 3.46 | 2.44 | 2.01 | 4.00 | 3.76, 3.66 | 3.87 | 3.13 | 0.0 | 8.9 | | 26d e | 3.70 | 3.40 | 6.60 | 4.28 | 3.49 | 2.53 | 1.94 | 4.10 | 3.77, 3.66 | 3.98 | 3.20 | 2.2 | 8.9 | | $27a^{f}$ | 3.44 | 3.28 | 7.13 | 4.21 | 3.50 | 2.38 | 2.12 | 3.72 | 3.78 | 2.30 | 2.05 | 8.5 | 11.5 | | 27bf | 3.44 | 3.19 | 7.13 | 4.19 | 3.47 | 2.47 | 1.88 | 4.03 | 3.74 | 2.30 | 2.05 | 0.0 | 9.0 | ^a CH₃ group for Ala derivatives 21a and 21d. ^b From the a/b mixture. ^c Not measured. ^d From the cd mixture. ^e From the ad mixture. ^f From the abcd mixture. 5(2,2-Dimethoxycarbonyl)ethyl-3(S)-(indole-3-yl)methyl-2-oxo-1,2,3,6-tetrahydropyrazine (17). ^{1}H NMR (300 MHz, CDCl₃): δ 2.41 (m, 1H, 5-CH₂), 2.62 (m, 1H, 5-CH₂), 2.74 (dd, 1H, 6-H, J=17.6, 2.5), 3.19 (dd, 1H, 3-CH₂, J=14.4, 4.4) 3.38 (dd, 1H, 6-H, J=17.6, 2.7), 3.40 (dd, 1H, 3-CH₂, J=14.4, 5.2), 3.69 (s, 3H, CO₂CH₃), 3.70 (s, 3H, CO₂CH₃), 4.02 (dd, 1H, CH, Et, J=7.8, 6.7) 4.41 (m, 1H, 3-H), 6.63 (d, 1H, 1-H, J=2.7), 6.88-7.57 (m, 5H, In), 8.45 (s, 1H, NHi). ^{13}C NMR (50 MHz, CDCl₃): δ 28.53 (3-CH₂), 34.49 (5-CH₂), 45.78 (C-6), 47.44 (CH Et), 52.65, 52.71 (OCH₃), 61.50 (C-3), 110.16, 110.93, 119.02, 119.17, 121.64, 123.77, 127.79, 135.73 (Indole), 161.17 (C-5), 169.54, 169.77, 170.48 (CO). 3(S)-[3-(tert-Butoxycarbonyl)amino]propyl-5-(2,2-dimethoxycarbonyl)ethyl-2-oxo-1,2,3,6-tetrahydropyrazine (19). ¹H NMR (300 MHz, CDCl₃): δ 1.40 (s, 9H, CH₃ Boc), 1.53 (m, 2H, 2-CH₂ Pr), 1.72 (m, 1H, 3-CH₂), 1.89 (m, 1H, 3-CH₂), 2.86 (m, 2H, 5-CH₂), 3.10 (m, 2H, 3-CH₂ Pr), 3.71 (m, 1H, 6-H), 3.72 (s, 3H, CO₂CH₃), 3.73 (s, 3H, CO₂CH₃), 3.97-4.02 (m, 3H, 3-H, 6-H and CH Et), 4.74 (m, 1H, 3-NH Pr), 7.26 (d, 1H, 1-H, J=1.3). ¹³C NMR (50 MHz, CDCl₃): δ 25.54 (2-CH₂ Pr), 28.40 (CH₃ Boc), 30.48 (3-CH₂), 34.70 (5-CH₂), 40.18 (3-CH₂ Pr), 46.43 (C-6), 47.78 (CH Et), 52.64 (OCH₃), 59.70 (C-3), 79.01 (C Boc), 161.02 (C-5), 169.41, 170.29 (CO). 3(S)-Benzyl-5-(2-benzyl-2,2-dimethoxycarbonyl)ethyl-2-oxo-1,2,3,6-tetrahydropyrazine (35). ¹H NMR (300 MHz, CDCl₃): δ 2.56 (dd, 1H, 5-CH₂, J=17.4, 1.4), 2.69 (dd, 1H, 5-CH₂, J=17.4, 1.7), 3.05 (ddd, 1H, 6-H, J=17.8, 2.8, 1.1), 3.17 (dd, 1H, 3-CH₂, J=13.6, 6.0), 3.29 (dd, 1H, 3-CH₂, J=13.6, 4.4) 3.43 (d, 1H, CH₂ Bzl, J=19.4), 3.52 (m, 1H, 6-H), 3.56 (d, 1H, CH₂ Bzl), 3,69 (s, 3H, CO₂CH₃), 3.73 (s, 3H, CO₂CH₃), 4.47 (m, 1H, 3-H), 6.73 (br s, 1H, 1-H), 6.84-7.32 (m, 10H, Ph). ¹³C NMR (50 MHz, CDCl₃): δ 37.20, 37.85, 38.70 (3-CH₂, 5-CH₂ and CH₂ Bzl), 46.37 (C-6), 52.63 (OCH₃), 56.80 (5-CH₂), 61.64 (C-3), 126.71, 127.08, 128.17, 128.39, 129.61, 129.94, 136.23, 136.76 (Ph), 161.44 (C-5), 169.83, 170.86, 170.92 (CO). # Synthesis of 4-substituted 7-benzyl-7-methoxycarbonyl-3,6-dioxoperhydropyrrolo[1,2-a]pyrazines Method A. To a solution of the corresponding 4,7-disubstituted pyrrolopyrazine (1.8 mmol) in 1,2-dimethoxyethane or THF (25 mL) was added, under Ar atmosphere, freshly prepared NaMeO (1.8 mmol). After 5 min. of stirring, benzyl bromide (2.7 mmol) was added and the stirring continued overnight. After evaporation of the solvent, the residue was extracted with EtOAc (100 mL) and washed with H₂O (2 x 50 mL) and brine. The organic layer was dried over Na₂SO₄ and evaporated to dryness. The resulting residue was purified on a silica gel column using the solvent system specified in each case. Method B. Identical to that described in method B for the synthesis of 4,7-disubstituted analogues, but starting from the disubstituted malonate derivative 34. 7-Benzyl-4-methyl-7-methoxycarbonyl-3,6-dioxoperhydropyrrolo[1,2-a]pyrazine (28). Chromatographic solvent system: CH₂Cl₂/MeOH (75:1). Isomer 28a: Yield, 53% (From 21a, method A). Anal. Calcd. for C₁₇H₂₀N₂O₄: C 64.54, H 6.37, N 8.85. Found: C 64.77, H 6.47, N 9.01. Isomer 28b: Yield, 15% (From 21a, method A). Anal. Calcd. for C₁₇H₂₀N₂O₄: C 64.54, H 6.37, N 8.85. Found: C 64.29, H 6.52, N 8.64. Isomer 28d: Yield, 69% (From 21d, method A). Anal. Calcd. for C₁₇H₂₀N₂O₄: C 64.54, H 6.37, N 8.85. Found: C 64.51, H 6.40, N 8.97. 7-Benzyl-4-isobutyl-7-methoxycarbonyl-3,6-dioxoperhydropyrrolo[1,2-a]pyrazine (29). Chromatographic solvent system: CH₂Cl₂/MeOH (130:1). Isomer **29ab**: Yield, 80% ($\mathbf{a/b}$ =3:1, from **22ab**, method A). Anal. Calcd. for C₂₀H₂₆N₂O₄: C 67.02, H 7.31, N 7.81. Found: C 67.10, H 7.60, N 8.01. Isomer **29cd**: Yield, 69% ($\mathbf{c/d}$ =1:1, from **22cd**, method A). Anal. Calcd. for C₂₀H₂₆N₂O₄: C 67.02, H 7.31, N 7.81. Found: C 67.23, H 7.58, N 7.67. 4,7-Dibenzyl-7-methoxycarbonyl-3,6-dioxoperhydropyrrolo[1,2-a]pyrazine (30). Chromatographic solvent system: Gradient from 50 to 90% of EtOAc in hexane. Isomer 30a: Obtained in 53 and 17% yield from 23 and 34, respectively, using methods A and B. HPLC; t_R =37.73 min (A/B, 22:78). Anal Calcd. for $C_{23}H_{24}N_2O_4$: C 70.39, H 6.16, N 7.14. Found: C 70.18, H 6.40, N 7.03. Isomer 30b: Obtained in 12 and 28% yield from 23 and 34, respectively, using methods A and B. HPLC; t_R =87.27 min (A/B, 22:78). Anal Calcd. for $C_{23}H_{24}N_2O_4$: C 70.39, H 6.16, N 7.14. Found: C 70.12, H 6.02, N 6.98. Isomer 30c: Obtained in 2 and 5% yield from 23 and 34, respectively, using methods A and B. HPLC; t_R =41,80 min (A/B, 22:78). Anal Calcd. for $C_{23}H_{24}N_2O_4$: C 70.39, H 6.16, N 7.14. Found: C 69.98, H 6.16, N 6.99. Isomer 30d: Obtained in 7 and 10% yield from 23 and 34, respectively, using methods A and B. HPLC; t_R =81.93 min (A/B, 22:78). Anal Calcd. for $C_{23}H_{24}N_2O_4$: C 70.39, H 6.16, N 7.14. Found: C 70.15, H 6.40, N 6.97. Table 5. Significant ¹H NMR data of 4,7,7-trisubstituted perhydropyrrolo[1,2-a]pyrazines (300 MHz, CDCl₃) | | δ (ppm) | | | | | | | | | | |-------------------------|---------|------|------|------|-----------|------|------|------|------------------|--| | Compd. | F | I-1 | H-2 | H-4 | H- | -8 | H-8a | 4- | CH2 ^a | | | 28a | 3.16 | 3.07 | 6.99 | 3.92 | 2.2 | 22 | 2.32 | 1. | 65 | | | 28b | 3.27 | 2.65 | 7.01 | 4.19 | 2.39 | 1.61 | 3.84 | 1. | 55 | | | 28d | 3 | .21 | 6.74 | 4.38 | 2.36 | 2.27 | 3.09 | 1. | 11 | | | 29ab | 3. | .13 | 6.55 | 3.97 | 2.2 | 21 | 2.38 | 2. | .02 | | | 29b ^b | 3.26 | 2.93 | 5.77 | 4.51 | 2.56 1.65 | | 3.85 | 1. | 1.65 | | | 29c ^c | 3.72 | 3.01 | 6.33 | 4.17 | 2.27 2.00 | | 4.94 | 1. | 1.80 | | | 29d ^c | 3.43 | 3.20 | 6.87 | 4.89 | 2.62 | 1.78 | 4.17 | 1.84 | 1.21 | | | 30a | 2.57 | 1.54 | 6.40 | 4.21 | 1.9 | 98 | 2.09 | 3.99 | 3.04 | | | 30b | 2.83 | 1.48 | 6.40 | 4.53 | 2.30 | 1.48 | 3.75 | 3.77 | 3.06 | | | 30c | 2.75 | 1.65 | 6.25 | 4.68 | 2.48 | 1.50 | 2.88 | 3.41 | 3.24 | | | 30d | 3.25 | 2.90 | 6.27 | 4.70 | 2.15 | 1.95 | 2.48 | 3.33 | 3.06 | | | 31a | 2.45 | 1.63 | 5.75 | 4.18 | 1.9 | 98 | 2.15 | 4.03 | 3.34 | | | 31b | 2.68 | 1.46 | 5.96 | 4.44 | 2.21 | 1.27 | 3.68 | 3.90 | 3.31 | | | 32a | 3.35 | 3.07 | 6.49 | 3.93 | 2.2 | 20 | 2.38 | 3.11 | 3.04 | | | 32b ^b | 3.40 | 1.49 | 6.46 | 4.43 | 2.04 | 1.25 | 3.37 | 3. | 05 | | | 32c ^c | 3.07 | 2.12 | 6.10 | 3.91 | 2.50 | 1.60 | 4.20 | 3. | 05 | | | 32d | 3 | .30 | 6.25 | 4.44 | 2.35 | 2.12 | 3.68 | 3.04 | 2.75 | | | 33a ^b | 3 | .05 | 6.74 | 3.91 | 2. | 18 | 2.26 | 2.51 | 1.95 | | | 33b ^b | 3.22 | 2.70 | 6.86 | 4.18 | 2.50 | 1.95 | 3.77 | 2.28 | 1.90 | | | 33c ^c | 3.10 | 2.65 | đ | 4.29 | 2.24 | 1.55 | 3.70 | 2.45 | 2.12 | | | 33d ^c | 3.36 | 3.05 | d | 4.04 | 2.0 |)5 | 3.00 | 2.45 | 2.02 | | ^a CH₃ group for Ala derivatives 29. ^b From the ab mixture. ^c From the cd mixture. ^d Included in the aromatic signals. 7-Benzyl-4-(indole-3-yl)methyl-7-methoxycarbonyl-3,6-dioxoperhydropyrrolo[1,2-a]pyrazine (31). Chromatographic solvent system: CH₂Cl₂/MeOH (60:1). Isomer 31a: Yield, 34% (From 24ab, method A). Anal. Calcd. for C₂₅H₂₅N₃O₄: C 69.59, H 5.84, N 9.74. Found: C 69.32, H 6.53, N 9.41. Isomer 31b: Yield, 9% (From 24ab, method A). Anal. Calcd. for C₂₅H₂₅N₃O₄: C 69.59, H 5.84, N 9.74. Found: C 69.21, H 5.97, N 9.39. 7-Benzyl-4-(methoxycarbonyl)methyl-7-methoxycarbonyl-3,6-dioxoperhydropyrrolo[1,2-a]pyrazine (32). Chromatographic solvent system: CH₂Cl₂/MeOH (15:1). Isomer 32a: Obtained in 10 and 25% yield from 26abcd and 26ab, respectively, method A. Anal. Calcd. for C₁₉H₂₂N₂O₆: C 60.95, H 5.92, N 7.48. Found: C 60.73, H 5.85, N 7.16. Isomer 32ab: Obtained in 8% (a/b, 1:1) and 16% (a/b, 1:1.7) yield from 26abcd and 26ab, respectively, method A. Anal. Calcd. for C₁₉H₂₂N₂O₆: C 60.95, H 5.92, N 7.48. Found: C 61.03, H 6.28, N 7.21. Isomer 32cd: Obtained in 10% (c/d, 1:1.5, method A). Anal. Calcd. for C₁₉H₂₂N₂O₆: C 60.95, H 5.92, N 7.48. Found: C 60.66, H 5.90, N 7.67. Isomer **32d**: Obtained in 7% yield from **26abcd**, method A. Anal. Calcd. for $C_{19}H_{22}N_2O_6$: C 60.95, H 5.92, N 7.48. Found: C 60.74, H 5.71, N 7.59. Complex mixtures of mono- and dicarboxylic acid derivatives were also isolated from this reaction. ## **ACKNOWLEDGMENTS** We thank the C.I.C.Y.T. (FAR 94-0705) for finantial support. We also thank Mr. F. Caballero for the preparation of the manuscript. ### REFERENCES - For recent reviews on peptidomimetics and their applications see: (a) Morgan, B.A.; Gainor, J.A. Annu. Rep. Med. Chem. 1989, 24, 243-252. (b) Freidinger, R.M. in Medicinal Chemistry for the 21st Century; Wermuth, C.G.; Koga, N.; König, H.; Metcalf, B.W., Eds. Blackwell: Oxford, 1992, p. 233-245. (c) Giannis, A.; Kolter, T. Angew Chem. Int. Ed. Engl. 1993, 32, 1244-1267. (d) Rees, D.C. Annu. Rep. Med. Chem. 1993, 28, 59-68. (e) Wiley, R.A.; Rich, D.H. Med. Res. Rev. 1993, 13, 327-384. - 2. Hölzemann, G. Kontakte 1991, 3-12 and 55-63. - 3. Olson, G.L.; Voss, M.E.; Hill, D.E.; Kahn, M.; Madison, V.S.; Cook, C.M. J. Am. Chem. Soc. 1990, 112, 323-333. - Ward, P.; Ewan, G.B.; Jordan, C.C.; Ireland, S.J.; Hagan, R.M.; Brown, J.R. J. Med. Chem. 1990, 33, 1848-1851. - 5. Genin, M.J.; Mishra, R.K.; Johnson, R.L. J. Med. Chem. 1993, 36, 3481-3483. - 6. Bélander, P.C.; Dufresne, C. Can. J. Chem.; 1986, 64, 1514-1520. - Hirschmann, R.; Nicolau, K.C.; Pietranico, S.; Leahy, E.M.; Salvino, J.; Arison, B.; Cichy, M.A.; Spoors, P.G.; Shakespeare, W.C.; Sprengeler, P.A.; Hamley, P.; Smith III, A.B.; Reisine, T.; Raynor, K.; Maechler, L.; Donaldson, C.; Vale, W.; Freidinger, R.M.; Cascieri, M.R.; Strader, C.D. J. Am. Chem. Soc. 1993, 115, 12550-12568. - 8. Olson, G.L.; Bolin, D.R.; Bonner, M.P.; Bös, M.; Cook, C.M.; Fry, D.C.; Graves, B.J.; Hatada, M.; Hill, D.E.; Kahn, M.; Madison, V.S.; Rusiecki, V.K.; Sarabu, R.; Sepinwall, J.; Vincent, G.P.; Voss, M.E. J. Med. Chem. 1993, 36, 3039-3049. - 9. Hirschmann, R.; Sprengeler, P.A.; Kawasaki, T.; Leahy, J.W.; Shakespeare, W.C.; Smith III, A.B. J. Am. Chem. Soc. 1992, 114, 9699-9701. - 10. Farmer, P.S.; Ariëns, E.J. Trends Pharmacol. Sci. 1982, 3, 362. - 11. González-Muñiz, R.; Domínguez, M.J.; García-López, M.T. Tetrahedron 1992, 48, 5191-5198. - 12. Part of this work has appeared in preliminary form: Martín-Martínez, M.; García-López, M.T.; González-Muñiz, R. *Tetrahedron Lett.* **1992**, *33*, 2187-2190. - 13. García-López, M.T.; González-Muñiz, R.; Harto, J.R. Tetrahedron 1988, 44, 5131-5138. - 14. Woodard, R.W. J. Org. Chem. 1985, 50, 4796-4799. - 15. Harada, K.; Yoshida, T. Bull. Chem. Soc. Japan 1970, 43, 921-925. - 16. Harada, K.; Munegumi, T. Bull, Chem. Soc. Japan 1984, 57, 3203-3209. - 17. Meyers, A.I.; Wallace, R.H. J. Org. Chem. 1989, 54, 2509-2510.